1	Effect of winter crop and dry matter allocation on colostrum quality of							
2	dairy cattle.							
3	Dawn Dalley ¹ , Paul Edwards ¹ , Jane Kay ² , Willis Ritchie ³ , Nicole Hammond ³							
4	¹ DairyNZ, PO Box 85066, Lincoln University, 7647, New Zealand							
5	² DairyNZ, Cnr Ruakura and Morrinsville Roads, Hamilton, 3240, New Zealand;							
6	³ DairyNZ, Forth St, Invercargill							
7	Corresponding author. Email: <u>dawn.dalley@dairynz.co.nz</u>							
8								
9	Short Title: Winter crop and colostrum quality							
10								
11	Abstract							
12	During winter 2017 320 mixed-age cows were assigned to four treatments (80/treatment) at the southern							
1/	Dairy Hub, in Southland, New Zealand, to investigate early lactation performance of cows wintered on							
15	collected from each quarter of each courted a Priv measurement made to assess colectrum quality							
16								
17	Average Brix content did not differ significantly between treatment groups but there was significant							
18	variation between cows and guarters within cows. Cows wintered on FB had a numerically higher							
19	proportion of samples with a Brix > 22 (adequate quality). It is as yet unknown if the colostrum quality							
20	range differences were due to differences in calf colostrum removal prior to sampling or to the nutrition of							
21	the dam during winter.							
22								
23	Additional keywords: fodder beet, kale, immuno-globulin							
24								
25	Introduction							
26	Winter-grazed forage crops continue to be an important aspect of farming in southern regions of New							
27	Zealand. Brassica crops (kale, turnips, and swedes) and fodder beet (FB) are an essential source of winter							
28	feed on farms in the southern regions of NZ (Nichol et al. 2003; Dalley, 2010), with FB use increasing							
29	exponentially in recent years (wagnorn et al. 2018). Following this rapid increase, farmers and							
30 21	nerformance. Increased body condition score at calving in cows wintered on EB has resulted in more							
32	metabolic disease e.g. milk fever and liver disfunction at parturition which may affect colostrum quality							
33								
34	To ensure good health and future production potential, newborn calves need to absorb immunoglobulins							
35	(IgG) by ingestion of colostrum, during the first 24 hours of life. The concentration of IgG in colostrum							
36	varies according to many factors including a cow's health history, volume of colostrum produced, age of							
37	cow and breed (Gulliksen et al. 2008). The gold standard test for measuring IgG in colostrum, radial							
38	immunodiffusion, is expensive and technically difficult to measure, so IgG is often indirectly assessed using							
39	a Brix refractometer (Bielmann et al. 2009; Quigley et al. 2013). The purpose of the experiment was to							
40	determine if winter crop type and dry matter (DM) allocation affected colostrum quality, as assessed with							
41	Brix, in mixed-aged cows at their first milking.							
42								
43	Materials and methods							
44	In May 2017 320 mixed-aged Friesian-cross cows were randomly allocated to four treatments in a 2x2							
45	factorial design with crop type (FB or kale) and level of DM allocation (target for 0.7 body condition score							
40 47	unit gain (larget) or ad libitum (Ad Lib)), as the factors (lable 1). Ireatments were balanced for age (4.6 \pm							
4/	σ_{0} years), expected calving date (22 Aug 2017) and breeding worth (91 \pm 1.99). Cows were transitioned							

48 onto their winter diet following recommended good management practice for each crop type. Ten days

49 before expected calving date the cows were drafted off crop and offered 10 kg DM of pasture and baleage

- 50 until calving.
- 51

52 During calving calves were removed from the dams once per day in early afternoon. Prior to the first

53 milking a foremilk sample was collected from each quarter of all cows and stored frozen. Quarters that

54 visually exhibited signs of suckling were included and noted. Following the completion of calving samples

55 were removed from the freezer and thawed before a Brix refractometer was used to measure colostrum quality.

- 56
- 57

58 Results were analysed using REML variance components analysis in Genstat with Brix as the response

59 variate and crop type, DM allocation and crop type x DM allocation as the model factors. The proportion of

60 cows with a mean Brix < 22 was analysed using generalised linear models with a binomial error distribution.

61

62 Results

63 There was no significant difference in mean Brix between treatment groups (Table 1). Numerical differences 64 were observed in the proportion of cows with an average Brix value greater than 22, however significant 65 between-cow variability resulted in these differences being statistically non-significant. Numerically more 66 cows on the Ad Lib feed allocation and FB treatments had a mean Brix greater than 22. Samples from suckled 67 quarters had a lower Brix than quarters with no evidence of suckling (data not presented).

68

69 Discussion

70 Concentrations of $IgG \ge 50g/L$ or a Brix ≥ 22 are considered to indicate good quality colostrum (Bielmann et 71 al. 2009; Quigley et al. 2013). The current study demonstrated significant variation in colostrum quality 72 between guarters within a cow and between cows within treatments resulting in insufficient statistical power 73 to detect statistically significant differences between treatments. Average concentrations at the first milking 74 exceeded the 22 Brix threshold for all treatments except the Target kale treatment. Denholm et al. (2017) 75 reported that only 10% of pooled colostrum samples from commercial farms in New Zealand had a Brix >22 76 and attributed this to pooling first milking colostrum with later milkings, once-daily collection of calves, and 77 herd vaccination.

78

79 Brix values indicate that not all cows were producing colostrum of suitable quality for newborn calves and 80 that at the time of sampling a higher proportion of kale cows had Brix values <22. Although cows and calves 81 were collected at the same time each day the amount of colostrum suckled by the calf would have varied 82 based on time between birth and collection and the suckling behaviour of the calf. Increasing the interval 83 between calving and collection of first colostrum and an increase in colostrum volume are associated with 84 decreased IgG concentration of colostrum (Moore et al. 2005; Pritchett et al. 1991).

85

86 The lack of effect of crop type during the non-lactating period on Brix in the current experiment is consistent 87 with results reported by Nowak et al. (2012) and Winkelman et al. (2008). However, in the study of Nowak 88 et al. (2012) calves from cows offered a high energy diet during the dry period had a better immunity status 89 during their first weeks of life and increased daily body weight gain in the first three weeks of life.

90

91 Conclusions

92 Cows wintered on FB and kale had similar average colostrum Brix values, indicating there was no difference 93 in average colostrum quality from cows wintered on these diets, despite numerically more cows wintered on 94 kale having inferior quality colostrum at the first milking. Additional research is required to understand the 95 relationship between IgG concentration and colostrum volume and to determine if crop type affects the 96 immunity status of the calves in the first week of life.

97

98 References

99	Bielmann, V., Gillan, J., Perkins, N.R., Skidmore, A.L., Godden, S., Leslie, K.E.: An evaluation of Brix
100	refratometry instruments for measurement of colostrum quality in dairy cattle. Journal of Dairy
101	Science 93: 3713-3721. (2009)
102	Dalley, D.E.: Achieving wintering targets – critical success factors for different wintering systems in
103	Southland and Otago. Proceedings of the South Island Dairy Event, Invercargill, New Zealand. pp. 224-
104	242. (2010)
105	Denholm, K.S., Hunnam, J.C., Cuttance E.L., McDougall, S.: Associations between management practices
106	and colostrum quality on New Zealand dairy farms. New Zealand Veterinary Journal 65(5): 257-263.
107	(2017)
108	Gulliksen, S.M., Lie, K.I., Solverod, L., Osteras, O.: Risk factors associated with colostrum quality in
109	Norwegian Dairy Cows. Journal of Dairy Science 91(2): 704-712. (2008)
110	Moore, M., Tyler, J.W., Chigerwe M., Dawes, M.E., Middleton, J.R.: Effect of delayed colostrum collection
111	on colostral IgG concentration in dairy cows. Journal of the American Veterinary Medical Association
112	226: 1375-1377. (2005).
113	Nichol, W., Westwood, C., Dumbleton, A., Amyes, J.: Brassica wintering for dairy cows: overcoming the
114	challenges. Proceedings of the South Island Dairy Event, Lincoln, New Zealand. pp. 154-172. (2003).
115	Quigley, J.D., Lago, A., Chapman C., Erikson P., Polo J.: Evaluation of the Brix refractometer to estimate
116	immunoglobulin G concentration in bovine colostrum. Journal of Dairy Science 96: 1148-1155. (2013)
117	Waghorn, G.C., Collier, K., Bryant M., Dalley D.E.: Feeding fodder beet (Beta vulgaris L.) with either barley
118	straw or pasture silage to non-lactating dairy cows. New Zealand Veterinary Journal . (2018)
119	
120	
121	
122	
123	
124	

Table 1: Crop and supplement allocation (kg DM/cow/d), targeted metabolizable energy intake (MEI), pre-calving body condition score and colostrum quality of cows wintered on kale or fodderbeet (FB) at target DM allocation for 0.7 BCS gain (Target) or ad libitum (Ad Lib) for 8 weeks in winter 2017.

	Target Kale	Ad Lib Kale	Target FB	Ad Lib FB	SED	P value	P value DM	P value
						Diet	allocation	interaction
Kale allocation (kg DM/cow/d)	10.4	14.0			-	-	-	-
FB allocation (kg DM/cow/d)			9.1	11.9	-	-	-	-
Baleage allocation (kg DM/cow/d)	4.5	2.9	4.5	2.9	-	-	-	-
Total DM allocation (kg DM/cow/d) [#]	14.9	16.9	13.6	14.9	-	-	-	-
Targeted ME intake (MJ ME/cow/d)	140	160	140	160	-	-	-	-
Pre-calving body condition score	5.1	5.1	5.1	5.2	0.36	NS	NS	NS
Average Brix	21.6	22.9	22.2	23.1	1.08	0.61	0.16	0.75
Proportion of cows with a Brix > 22	0.45	0.53	0.53	0.57	0.058	0.26	0.32	0.69

127 # Dry matter allocation to achieve the required MEI was based on estimated feed quality and the assumptions of 85% utilisation of the kale and baleage and 95% utilisation

128 of fodder beet